Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states.
نویسندگان
چکیده
Certain filamentous nitrogen-fixing cyanobacteria generate signals that direct their own multicellular development. They also respond to signals from plants that initiate or modulate differentiation, leading to the establishment of a symbiotic association. An objective of this review is to describe the mechanisms by which free-living cyanobacteria regulate their development and then to consider how plants may exploit cyanobacterial physiology to achieve stable symbioses. Cyanobacteria that are capable of forming plant symbioses can differentiate into motile filaments called hormogonia and into specialized nitrogen-fixing cells called heterocysts. Plant signals exert both positive and negative regulatory control on hormogonium differentiation. Heterocyst differentiation is a highly regulated process, resulting in a regularly spaced pattern of heterocysts in the filament. The evidence is most consistent with the pattern arising in two stages. First, nitrogen limitation triggers a nonrandomly spaced cluster of cells (perhaps at a critical stage of their cell cycle) to initiate differentiation. Interactions between an inhibitory peptide exported by the differentiating cells and an activator protein within them causes one cell within each cluster to fully differentiate, yielding a single mature heterocyst. In symbiosis with plants, heterocyst frequencies are increased 3- to 10-fold because, we propose, either differentiation is initiated at an increased number of sites or resolution of differentiating clusters is incomplete. The physiology of symbiotically associated cyanobacteria raises the prospect that heterocyst differentiation proceeds independently of the nitrogen status of a cell and depends instead on signals produced by the plant partner.
منابع مشابه
Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera
Heterocystous cyanobacteria form symbiotic associations with a wide range of plant and fungal hosts. We used a molecular phylogenetic approach to investigate the degree of host specialization of cyanobacteria associated with four closely related species of the lichenized fungus Peltigera, and to compare these strains with other symbiotic cyanobacteria. We conducted phylogenetic analyses on 16S,...
متن کاملStress response in cyanobacteria
Cyanobacteria are an important source of natural products. In this article, we briefly review the responses of cyanobacteria to different stresses. Abiotic stresses (temperature, salt, heavy metals, metalloid and ultraviolet (UV) influence cell growth and metabolism in cyanobacteria. Salt stress is a major abiotic factor that decrease...
متن کاملDiverse roles of the GlcP glucose permease in free-living and symbiotic cyanobacteria.
Certain cyanobacteria can form symbiotic associations with plants, where the symbiont supplies the plant partner with nitrogen and in return obtains sugars. We recently showed that in the symbiotic cyanobacterium Nostoc punctiforme, a glucose specific permease, GlcP, is necessary for the symbiosis to be formed. Results presented here from growth yield measurements of mutant strains with inactiv...
متن کاملRegulation of gene expression in tissue engineering, differentiation and bone regeneration of ossifying stem cells
Cells that make up the bodychr('39')s tissues are usually three-dimensional architecture, the threedimensional culture system enables cells to create natural and in vivo interactions which is an ideal environment for 3D (Three-dimensional) cell growth and issues such as exchange of similar food exchanges inside Capillary in living tissue. In tissue engineering discussion, cell scaffolding is hi...
متن کاملOccurrence and Localization of Phycoerythrin in Symbiotic Nostoc of Cycas revoluta and in the Free-Living Isolated Nostoc 7422.
The phycobiliprotein phycoerythrin was localized in symbiotic and free-living Nostoc of the cycad Cycas using immunocytochemistry. In symbiotic Nostoc, phycoerythrin was associated with the thylakoid membranes of vegetative cells and absent from heterocysts. Similar cellular/subcellular localization was observed between symbiotic Nostoc and the free-living Cycas isolate Nostoc 7422.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology and molecular biology reviews : MMBR
دوره 66 1 شماره
صفحات -
تاریخ انتشار 2002